Grundwissen Mathematik: 8. Jahrgangsstufe

© St. Marien-Gymnasium, 2013 **Diagramm**

1. Direkt proportionale Größen

- x und y sind direkt proportional, wenn
- dem n-fachen Wert für x der n-fache Wert für y entspricht,
- die Wertepaare **quotientengleich** sind: $\frac{y_1}{x_1} = \frac{y_2}{x_2}$
- v = c·x ist,
- das x-y-Diagramm eine Ursprungsgerade ist.

2. Indirekt proportionale Größen

3. Der Kreisumfang und -fläche

- x und y sind indirekt proportional, wenn
- dem n-fachen Wert für x der n-te Teil von y entspricht,
- die Wertepaare **produktgleich** sind: $x_1 \cdot y_1 = x_2 \cdot y_2$

•
$$y = \frac{c}{x}$$
 ist,

• das x-y-Diagramm eine Hyperbel ist.

Diagramm 30 25 20 15 10

$u = \pi \cdot d$

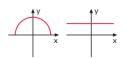
Kreiszahl: π = 3,14 ... Kreisumfang: $u = \pi \cdot d = 2 \cdot r \cdot \pi$ Kreisflächeninhalt: $A = r^2 \cdot \pi$

4. Funktion Abhängige Größen x und y werden durch Funktionen beschrieben. Eine Funktion f ist eine eindeutige **Zuordnung**: Sie ordnet jedem x-Wert genau einen y-Wert zu.

Wir schreiben dafür mit dem **Zuordnungspfeil**: $x \mapsto y$

Der von x abhängige Wert f(x) bzw. y heißt **Funktionswert**. Wegen der Eindeutigkeit der Zuordnung liegen beim Graphen einer Funktion nie Punkte übereinander.

Keine Funktionen:



5. Beschreiben einer Funktion

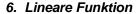
durch einen Text

Den Bremsweg y eines Autos in Metern erhält man, wenn man die vom Tachometer angezeigte Zahl x durch zehn dividiert und das Ergebnis quadriert.

· durch eine Wertetabelle

X	0	10	20	30	40	50
у	0	1	4	9	16	25

- durch eine Gleichung
- $y = \left(\frac{1}{10}x\right)^2$
- durch einen Graphen
- durch eine Zuordnungsvorschrift $x \to \left(\frac{1}{10}x\right)^2$ "dem x wird $\left(\frac{1}{10}x\right)^2$ zugeordnet"



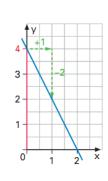
Gleichung: y = mx + t oder f(x) = mx + t

m ist die Steigung und

t der y-Abschnitt der zugehörigen Geraden.

Beispiel: y = -2x + 4

- y-Abschnitt (0 | 4) markieren;
- von dort den Nenner von m = $\frac{-2}{1}$, also +1, in die x-Richtung
- und dann den Zähler, also -2, in die y-Richtung abtragen.



Ein x-Wert, für den der Funktionswert y null ist, heißt **Nullstelle**: (in diesem Beispiel: x = 2).

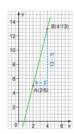
m = 0	m < 0	m > 0	t = 0
Graph parallel zur x-Achse	Gerade fällt	Gerade steigt	Gerade geht durch (0/0)

7. Aufstellen der Gleichung einer Geraden

Beispiel: Gerade durch A (2 | 5) und B (4 | 13)

Steigung:
$$m = \frac{\text{H\"o}\text{henzuwachs}}{\text{L\"angenzuwachs}} = \frac{\Delta y}{\Delta x} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{13 - 5}{4 - 2} = \frac{8}{2} = 4$$

also:
$$y = 4x + t$$
, dann A einsetzen: $5 = 4 \cdot 2 + t$
 $\Rightarrow t = -3$ \Rightarrow Gleichung: $y = 4x - 3$



8. Schnittpunkt zweier Geraden

Beim Berechnen des Schnittpunkts zweier Geraden müssen die Funktionsgleichungen gleich gesetzt werden.

Beispiel:
$$f(x) = 2x - 4$$
 und $g(x) = 0.4x + 1$

Gleichsetzen:
$$2x - 4 = 0.4x + 1$$

$$1,6x = 5$$

$$x = \frac{25}{8}$$

x einsetzen in eine der Gleichungen:

also:
$$S(\frac{25}{8} | 2\frac{1}{4})$$

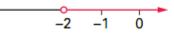
9. Lineare Ungleichungen

Beim Multiplizieren oder beim Dividieren einer Ungleichung mit einer negativen Zahl müssen wir das Ungleichheitszeichen umkehren.

Beispiel:

$$-3x < 6 \mid :(-3)$$

 $x > -2$



Die Lösungsmenge wird in der Intervallschreibweise angegeben: $\mathbb{L} =]-2;\infty[$

10.Lineare Gleichungssysteme

(I)
$$4x - 2y = -2$$
 \Rightarrow (I*) $y = 2x + 1$

$$(II) x + y = 4 \qquad \Rightarrow (II^*) y = -x + 4$$

Gleichsetzverfahren	Einsetzverfahren	Additionsverfahren	Grafische Lösung
$(I^*) = (II^*)$	z. B. (II*) in (I)	(I): $4x - 2y = -2$	Grafische Lösung
2x + 1 = -x + 4	einsetzen:	(II): x + y = 4	†v /
3x = 3	4x - 2(-x+4) = -2	(I): $4x - 2y = -2$	44
x = 1	6x - 8 = -2	$2 \cdot (II)$: $2x + 2y = 8$	2
	6x = 6	6x + 0 = 6	1
	x = 1	x = 1	•
			V 1 2 3 4 A

Die Lösung x = 1 in (I) oder (II) einsetzen: $y = 3 \Rightarrow L = \{(1|3)\}$ $\mathbb{L} = \{(1|3)\}$

Sonderfälle:

Conditionalic.		
Es gibt keine Lösung	Es gibt unendlich viele Lösungen	
(I) $2x - y = -1 \implies y = 2x + 1$	(I) $2x - y = -1 \implies y = 2x + 1$	
(II) $6x - 3y = 6 \implies y = 2x - 2$	(II) $6x - 3y = -3 \implies y = 2x + 1$	
Additionsverfahren:	Additionsverfahren:	
$-3 \cdot (I) + (II)$ $\Rightarrow 0 = 9 \text{ (falsch)}$	$-3 \cdot (I) + (II) \Rightarrow 0=0 \text{ (wahr)}$	
Grafisch: zwei parallele Geraden	Grafisch: zwei identische Geraden	

11. Bruchterme und Bruchfunktionen

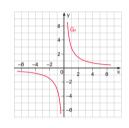
Bei einem **Bruchterm** treten Variable im Nenner auf: z. B. $\frac{3}{x}$, $\frac{3}{x-1}$, $\frac{x+1}{x}$, $\frac{a-3}{a^2}$ Die Definitionsmenge D enthält nur Zahlen, für die der Nenner nicht 0 ist.

Beispiel:

Für
$$\frac{3}{x-1}$$
 ist $\mathbb{D} = \mathbb{Q} \setminus \{1\}$

Bruchfunktionen Beispiel: Für $f(x) = \frac{3}{x}$ ist $\mathbb{D}_f = \mathbb{Q} \setminus \{0\}$

Der Graph ist eine Hyperbel.



12. Transformation von Hyperbeln

Verschiebung in Ausgangsfunktion x-Richtung um 2 (nach rechts)		Verschiebung in y-Richtung um 4 (nach oben)	Spiegelung an der x- Achse
$\frac{1}{x}$ $\frac{1}{x-2}$		$\frac{1}{x}$ + 4	$-\frac{1}{x}$

13.Rechnen mit Bruchtermen

Zuerst Zähler und Nenner faktorisieren! → KÜRZEN!

Beispiel:
$$\frac{2x+2}{x^2+x} = \frac{2(x+1)}{x(x+1)} = \frac{2}{x}$$

In Summen und Differenzen darf nicht gekürzt werden!

Brüche mit gleichem Nenner heißen gleichnamig.

Addieren/Subtrahieren: Zuerst durch Erweitern gleichnamig machen, dann Zähler plus/minus Zähler, Nenner beibehalten!

Beispiel:
$$\frac{2}{a-2} - \frac{1}{a} = \frac{2a}{(a-2) \cdot a} - \frac{(a-2) \cdot 1}{(a-2) \cdot a} = \frac{2a - (a-2)}{(a-2) \cdot a} = \frac{2a - a + 2}{(a-2) \cdot a} = \frac{a+2}{(a-2) \cdot a}$$

Multiplizieren: Zähler mal Zähler, Nenner mal Nenner!

Beispiel:
$$\frac{2x+4}{x} \cdot \frac{3x}{x+2} = \frac{2(x+2) \cdot 3x}{x(x+2)} = \frac{6}{1} = 6$$

Dividieren: Multiplizieren mit dem Kehrbruch!

Beispiel:
$$\frac{6}{x+1}$$
: $\frac{3}{x^2+x} = \frac{6}{x+1} \cdot \frac{x^2+x}{3} = \frac{6 \cdot x \cdot (x+1)}{(x+1) \cdot 3} = \frac{2x}{1} = 2x$

14.Einfache Bruchgleichung lösen

Beispiel:
$$\frac{3}{x} = \frac{1}{x-2}$$
 | $\cdot x (x-2)$
 $3(x-2) = 1x$
 $3x-6 = x$ | $-x+6$
 $2x = 6$ | $: 2$
 $x = 3 \in \mathbb{D} \implies \mathbb{L} = \{3\}$

Vorgehensweise:

- · Definitionsmenge bestimmen;
- Falls möglich: Bruchterme kürzen;
- Mit dem Hauptnenner multiplizieren:
- Bruchtermfreie Gleichung lösen;
- Überprüfen, ob die Lösung zur Definitionsmenge gehört;
- · Lösungsmenge angeben!

15. Potenzen mit ganzzahligen Exponenten

Die ganze Hochzahl n der Potenz a^n zählt in der ausführlichen Schreibweise die Faktoren – für eine negative Hochzahl im Nenner.

$$10^3 = 10 \cdot 10 \cdot 10 = 1000$$
 und $10^{-3} = \frac{1}{10 \cdot 10 \cdot 10} = \frac{1}{1000}$

Beachte:

a)
$$a^{-n} = \frac{1}{a^n}$$

b) $a^0 = 1$

Wissenschaftliche Schreibweise von Zahlen (Gleitkommadarstellung)

Die ganze Zahl n in der Gleitkommadarstellung $a \cdot 10^n$ ($1 \le a < 10$) gibt an, um wie viele Stellen das Komma im Dezimalbruch a zu verschieben ist, damit wir die gewöhnliche dezimale Schreibweise der Zahl erhalten.

$$2.1 \cdot 10^6 = 2100000$$
 bzw. $2.1 \cdot 10^{-6} = 0.0000021$

16. Rechnen mit Potenzen

$$m, n \in \mathbb{Q}$$

Multiplizieren:
$$a^n \cdot a^m = a^{n+m}$$

Dividieren: $a^n : a^m = a^{n-m}$
Potenz einer Potenz: $(a^n)^m = a^{n \cdot m}$

17. Strahlensätze an der V-Figur

Wenn a || a' ist, gilt:

1. Strahlensatz	2. Strahlensatz	
	$\frac{a}{a'} = \frac{b}{b'} = \frac{c}{c'}$	
Beispiel: $\frac{x}{6} = \frac{4}{3} \Rightarrow x = \frac{6 \cdot 4}{3} = 8$ $\frac{y}{2} = \frac{4+3}{3} \Rightarrow y = \frac{7 \cdot 2}{3} = 4\frac{2}{3}$	b a' a'	

18. Strahlensätze an der X-Figur

Wenn cllc' ist, gilt:

1. Strahlensatz	2. Strahlensatz
	$\frac{a}{a'} = \frac{b}{b'} = \frac{c}{c'}$
Beispiel:	11 - 0
$\frac{a'}{5} = \frac{6}{4} \Rightarrow a' = \frac{6 \cdot 5}{4} = 7,5$ $\frac{c'}{3} = \frac{6}{4} \Rightarrow c' = \frac{6 \cdot 3}{4} = 4,5$ 3 5 6 3 6 7	c b' c'

19. Ähnliche Figuren

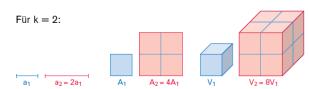
Zwei Figuren heißen ähnlich,

- wenn die Verhältnisse entsprechender Seiten alle gleich sind und
- entsprechende Winkel gleich groß sind.

Dreiecke sind schon ähnlich, wenn eine der beiden Bedingungen erfüllt ist.

Flächeninhalte und Volumina bei ähnlichen Figuren

- Eine ähnliche Figur mit k-fachen Seitenlängen hat den k²-fachen Flächeninhalt.
- Ein ähnlicher Körper mit k-fachen Kantenlängen hat das k³-fache Volumen.



20. Laplace-Experimente

Ein **Zufallsexperiment** ist ein Experiment, bei dem verschiedene Ergebnisse möglich sind. Die Menge Ω aller Ergebnisse nennt man **Ergebnisraum**. Sind alle Ergebnisse eines Zufallsexperiments gleich wahrscheinlich, bezeichnet man es als **Laplace-Experiment**.

Beispiel: Würfeln mit dem Ergebnisraum $\Omega = \{1, 2, 3, 4, 5, 6\}$.

Ergebnis (Elementarereignis): Element aus dem Ergebnisraum Zusammenfassung von Ergebnissen kann nicht eintreten, (z. B. Würfeln einer 7)

sicheres Ereignis Ω: ganzer Ergebnisraum, (z. B. Würfeln einer 1, 2, 3, 4, 5 oder 6)

Ein **Ereignis** ist eine Zusammenfassung von Ergebnissen. Sind alle Ergebnisse gleich wahrscheinlich, ist die Wahrscheinlichkeit eines Ereignisses A

 $P(A) = \frac{Anzahl \ der \ g\"{u}nstigen \ Ergebnisse}{Anzahl \ der \ m\"{o}glichen \ Ergebnisse} = \frac{g}{m}$ ("g\"{u}nstige durch m\"{o}gliche")

Beispiel Würfeln: P(ungerade Primzahl) = P(3, 5) = $\frac{2}{6} = \frac{1}{3}$

Zählprinzip

Bei einem mehrstufigen Zufallsexperiment erhält man die Anzahl der möglichen Ergebnisse, indem man die Anzahl der Möglichkeiten der einzelnen Stufen miteinander multipliziert.